IMPLEMENTATION OF AN ADA" REAL-TIME EXECUTIVE - A CASE STUDY

James D,
Bruce A.

Dr.

Laird
Burton

Mary R. Koppes

Intermetrics, Inc.
Aerospace Systems Group
5312 Bolsa Avenue
Huntington Beach, California 92649

ABSTRACT

Current Ada language
implementations and runtime
environments are immature,
unproven and are a key risk
area for real-time embedded
computer systems (ECS). This
study provides a test-case
environment in which the
concerns of the real-time, ECS
community are addressed. A
priority driven executive is
selected to be implemented in
the Ada programming language.
The model selected is
representative of real-time
executives tailored for
embedded systems used in
missile, spacecraft, and
avionics applications. An
Ada-based design methodology
is utilized, and two designs
are considered. The first of
these designs requires the use
of vendor supplied runtime and
tasking support. An alternat-
ive high-level design is also
considered for an implementat-
ion requiring no vendor
supplied runtime or tasking
support. The former approach
is carried through to impleme-~-
ntation.
* Ada 1s a Registered
Trademark of the U.S. Govern-
ment (AJPO)

INTRODUCTION

Since the inception of
the common DoD High Order
Language (HOL) effort in the
mid-70's, the Ada programming
language has remained u
cornerstone of the government
effort at producing softwarc
in a cost-effective mannecr.
validated Ada compilers are
becoming available on u
variety of different computery
with at least 17 validated
compilers now available and
more slated for validation
during the current ycar.
There are currently 37
different acfense programu
using Ada, and this number i
anticipated to exceed 1%0
during the next four years-“,
While this progress 1.
encouraging, the success of
the Ada language in meeting
the needs of specific applica-
tions will hinge on the
consideration of the potentiul
risks that face the implemen-
tors of a given system,

This process of risk identifi-
cation should be followed by
development of risk minimi-
zation and avoidance stratc-
gies tailored to meet the
needs of the system. The
emphasis of this paper ic in

D.3.5'1

ORIGINAL PAGE IS
OF POOR QUALITY

the area .of technical risk
identification and resolution
for real-time ECS
applicaticns. While the Ada
programming language {s
intended for real-time
applications, current compil-
ers and runtime systems are
unproven for these types of
programming efforts.
Consequently, the impact and
implications of using the Ada
language and Ada-oriented
methodologies in embedded
real-time development efforts
should be assessed. While it
is necessary to examine how
well and to what extent the
built-in real-time features of
the language meet the needs of
ECS applications,
additionally, we must re-eval-
uate the standard approaches
to solving real-time problems
in light of the new capabili-
ties and assess the impact, if
any, on the way we design and
implement these solutions in
software.

SCOPE

Perhaps the major
consideration with regard to
the use of the Ada programming
language for real-time ECS
applications is the cost of
doing so in terms of memory
and processing overhead. The
relative costs associated with
the use of Ada and its
real-time features is espe-
cially relevant to small
rmhedded computer Bystem
applications given the
physical and temporal con-
straints imposed on these
types of applications. The
determining factor in the
decision to utilize a parti-
cular high order language
(1oLL) feature is often the

efficiency of its implemen=
tation., It is important to
know what the utilization of
Ada with its real~time tasking
primitives, representation
specifications, exception
handling, and various other
features translates to in
terms of program size, speed,
and efficiency. The ability
to selectively include runtime
support and its resultant
overhead for these features on
an "as needed" basis 1is
another important consider-
ation. During the course of
this investigation, answers to
fundamental questions such as
these were sought.

BACKGROUND

It is important to stress
the significant conceptual
differences between the two
approaches inves*igated with
regard to this case study
implementation of a priority
driven Ada executive. Fiqure
l serves to illustrate the
alternative approaches and
concepts and their implica-
tions for the developer of an
Ada executive.

The terms 0.S., execu-
tive, and runtime support or
system (RTS) are often used
rather loosely when ECS topics
are discussed. The ambiguity
of this terminology in the ECS
environment is primarily due
to the overlap in function-
ality provided by different
implementations for different
applications., An application
residing on a bare machine may
interface with software
providing minimal scheduling
and memory management. This
software is often referred to
as an "executive" or runtime

D.3l5.2

ORIGINAL PAGE IS
OF POOR QUALITY

Cumnt Ada RTS Appmcl;cn include:

niine &
Sohwere Mbu e U (Mho M&
o Auniime Cole) 0.9, YRTR
any Comtination ot e Above {0.5. VRROW/VATR)

.

Loge
Srnremn

Do tnar vy
(1 ¥}

* RTS

L (L) Libearios

 Compananis nsiugs!
!‘.u Iomom.!lu»u\ for Ada Tesking Medel)

~ery e
Leseption Na Suppent
Tyve M““'

s tor Proded L

9¢ Postages (LO)

FIGURE 1
RUNTIME SUPPORT (RTS)
APPROACHES

kernel whereas the same
services provided on another
system may be obtained from
software referred to as an
0.5. The primary difference
in terminoclogy is attributable
to the variety and nature of
the services provided by the
support software in yuestion.
The more minimal the services
provided, the more likely that
the terms runtime support,
runtime kernel, or executive
will be applied. True
operating systems in the
strict sense are distinguished
by two major factors. They
are typically developed
independently of any compiler~-
/applications software and are
acquired independently rather
than as a part of a given
compiler system or package,

The other major distinction is
in the comprehensiveness of
the services provided by an
0.S. for the target machine;
services that may be targeted
and utilized by a variety of
differing applications and
tools as well as many diff-
erent compiler systems. The
minimal runtime support for
applications developed under «a
single compiler system may
interface to, and utilize, thc
comprehensive servicec
provided by an 0.5. There-
fore, the RTS for an ECS can
be thought of as providing thw
minimal required subset of
0.S. services needed for .
given application. As statecd,
this minimal subset can b
provided by direct access to
the underlying machine o:
through the utilization of thc
services provided by an
underlying comprehensive 0.8
The former case is the most
typical for embedded compute:
systems. The term “executive”
is most often used to refer to
that part of the RTS tnat
performs the basic schedulin.
and memory management., Utlic:
portions of the RTS mua,
include I1/0 control, timer, -
clock management, and
certain amount of syuto:
level runtime error and
interrupt trapping.

The RTS of an ko
supports the execution |
application programs and the
programming language featur:.
utilized to develop tnhu:
programs. As illustratcd n
Fiqure 1, this support can bLc
implemented in hardwa: ¢,
microcode, throuah diicct
calls to an 0.S., throudh the
use of runtime support
libraries, or by compile,

D.3.5.3

ORIGINAL PAGE IS
OF POOR QUALITY

WIS PP W e B ey

generated (in-line) code. The
operating system and RTS needs
of small embedded computer
systems are typically modest.
All that such small ECS
targets usually require is an
"executive" consisting of
little more than a basic
scheduler, memory manager and
some type of I/0 manager or
controller. Obviously,
different applications may
have specific needs relative
to memory management, /0, or
clock services wrich will be
reflected in the "executive/-
0.8" software.

APPROACH

This paper addresses two
basic options or approaches to
the implementation of an Ada
executive and briefly discus-
ses ongoing as well as
proposed work in a third area
of related investigation., The
first of these approaches is
explcred in depth (through to
implementation) and consists
of a combination of a "pseudo
executive" or scheduler at the
applications layer in concert
with vendor supplied executive
software at the runtime system
level., The obvious benefits ot
such an approach - imposing an
additional layer of control
upon the runtime system
scheduling mechanism - include
rase of portability, and
relative target independence
with respect to the underlying
scheduling algorithm at the
RTS layer. These benefits as
weell as the tradeoffs in
overhead and consistency from
implementation to implemen-
tation will be discussed in
detall,

The second option is
explored at a high level
only. This alternative,
termed the bare machine
approach, is consistent with
the traditional approach to
avionics-based executives and
is considerably more limited
in scope than the first in the
sense that it assumes no
underlying vendor supplied
r'ntime support. This
executive performs all
nececssary support for the
execution of user jobs or
"tasks". "owever, thise
approach is significantly mor.
restrictive than the first
with respect to the nature of
what constitutes a "task" as
well as to the use of certain
Ada language features in\al-
ving both the Ada tasking
model and dynamic memory
management and certain other
real-time aspects of the
language.

The third option is
considered only in terms (f
current and ongoing investi-
gative work and proposed
future studies based upon the
results of past investi-
gations. This approach
diverges from the others in
that it proposes a migration
to the runtime system layer in
order to probe the issues of
efficiency and rvisk reduction
for real-time Ada applica-
tions. This option emphasizes
the tailoring and optimization
of the executive functions
provided at the RTS layer.

A multi-phased approach
beginning with a requirements
specification was utilized for
the design and development of
the priority driven execu-
tive. The functional capabil-

D.3.5.4

ORIGINAL PAGE I8
OF POOR QUALITY

P R Y L T

ities that were to be provided
were extracted from an
existing avionics executive
implemented in a combination
of FORTRAN and Assembly
language. It was determined
that these same functional
capabilities would be provided
within the executive being
implemented in the Ada
language.

While providing substan-
tially the same functionality,
the Ada equivalent constituted
a complete re-design utilizing
Ada concepts and features
where possible. For this
reason, the Ada executive
posed some unique problems
from the outset with respect
to use of the new Ada concepts
and features such as the Ada
tasking model. These issues
are addressed in the RESULTS
section of this paper.

The Ada priority driven
executive was to provide
facilities for the creation of
active tasks via a scheduling
mechanism. The scheduling
mechanism would provide
time-dependent scheduling
capabilities, precision timing
of task activation as measured
by time base generated (TBG)
epochs, and signal dependent
scheduling capabilities. The
Ada priority driven executive
would perform prioritized
tasking and would have the
option of enabling and
disabling interrupts. The
.,apability to directly connect
to a real-time clock interrupt
would be provided. In the
absence of such a facility,
the real-time clock interrupt
would be simulated with the
smallest granularity pos-
sible. In short, the Ada

priority driven executive was
required to be a real-time,
multi-tasking process manager
with interrupt handling and
both cyclic and asynchronous
scheduling capability.

Integral to the design of
the Ada priority driven
executive was the selection
and application of a state-of-
-the-art, Ada-based design
methodology. A somewhat novel
design approach was selected
that was basef upon Object
Oriented Design® with enhance-
ments and modifications
specific for real-time
embedded systems . The
methodology derived was termed
Real-Time Object Oriented
Design (RTOOD) and drew upon
another real-time, systems-
-based desgsign methodology
called Design Approach fgr
Real-Time Systems (DARTS) .
The steps utilized in this
hybrid methodology arc
outlined iy Figure 2.

. Definition/statement of the problem
it Informal sttategy (Moditied specitication)
111, dentity abjects end attcibutes

W, identity Operstions

V. identity concurrency (OARYS)
Decomposit'on into taskepackspes
based on:

The asynchronous nsture of major transiorme
- ® quential ve. concurrent --
spetficaity:

Vo dependency

time eritlesl functions
computailonal requirements
tunction coheslon

temporatl cohselon

periodic execution

Vi, Eatablish the Interisces

Vil. implement the opetatians

* (DAATY)
Oesign Apgranch tor
Rosi-Time Bysioms

FIGURE 2
REAL-TIME OBJECT ORIENTED
DESIGN (RTOOD) METHOCOLOGY

D.3.5.5

ORIQINAL PAGE IS
OF POOR QUALITY

K

Similarly, a high 1level
design was developed for the
alternate approach - termed
here "the bare machine
approach” - to the development
of an Ada executive. The
"bare machine® model imple-
ments its own concurrency
through the executive while
disallowing the use of the Ada
tasking model per se as well
as any difficult, and poten-
tially risk=-prone, dynamic
storage management. The
potential benefits and risks
of each of these approaches
wvas examined with the former
approach being carried through
to implementation and limited
utilization.,

RESULTS
1. ADA EXECUTIVE WITH VENDOR
——RUNTIME SUPPORT

The capabilities of the
FORTRAN/Assembly language
implementation and the Ada
language implementation are
summarized in Table 1. The
Ada language version consists
cf two major components - the
program code and the vendor
supplied runtime system. 1In
hboth implementations the
scheduling primitives are
provided by the executive, but
the ultimate responsibility
for cyclic/acyclic task
zcheduling lies with the user
(application) tasks. Note,
however, that the task
interleaving and task waiting
in the Ada language version is
strictly under the control of
the Ada runtime system and not
ander the control of the
cxecutive as in the FORTRAN/-
Assembly implementation,
Furthermore, although tasking
could be prioritized dynam-

ically (changed) in the
FORTRAN/Assembly implemen-
tation, priorities at the
runtime system level are
static in the Ada language
version.

Functional Summary

Fiqure 3 depicts the major
functional components of the
Ada equivalent prototype
developed for the case study
investigation. The major
distinction between the Ada
implementation and the
FORTRAN/Assembly model
depicted in Figure 4 involves
the interaction of the Ada
runtime system with the
priority driven executive
functions.,

TAREY FORTRANASHEMEL Y VEREUS Ads MPUBMENT ATON

CAPARLTY FORTRANASSLL Y Acs A RUNTME
CYCULACYOLE
TAN SO €UND Provee Provaes
TASK DS SO-EDANG Proviass Provasd
TAS NTERLEAD Proveine Peovaind
TASK WA Provand Provamd
PRONTIRD TABOND Provded Provate Provasss
N0 NTOWLPT
NOND Prvoted Provied

While the FORTRAN/Asse.-
bly model managed all state
transitions for user tasks
from inactive to executing and
all information associated
with these state transitions,
the Ada implementation
utilizes the Ada runtime
support system (for the
tasking model) to manage the
active processing phase of any
user task as well as the body
of information associated with
a tasks' active execution,
Specifically, the Ada runtime

D.3.5.6

ORIGINAL PAGE IS
OF POOR QUALITY

ACTVE TASKS
(NAITING FOR RENDEZVOLR)

ADA) et

FIGURE 3
ADA PRIORITY DRIVEN
EXECUTIVE FUNCTIONAL
SCHEMATIC

system manages the inter-
leaving or time-slicing of
concurrently executing user
tasks and is responsible for
management of the associated
task activation information.
The start of a user tasks'
scheduled execution phase is
strictly under the control of
the Ada priority driven
executive at the applications
layer, yet, the management of
the transfer of control
between any number of concur-
rently executing user tasks is
by definition under the
control of the vendor supplxed
Ada runtime system.

To satisfy the require-
ment for a cyclic capability,
the executive was required to
have some methnd for specify-
ing fixed-rate scheduling,
This was provided on two
levels. In keeping with the
scheme utilized in the
original model, the facility
for scheduling a task for
execution is provided. Active

FIGURE 4
FORTRAN/ASSEMBLY
EXECUTIVE FI'NCTIONAL
SCHEMA 1 IC

tasks currently executing muy
therefore utilize this
facility to re-insert them-
selves into the schedule for
future execution, or this may
be done by some other actiwv
user task.

In the original model u
voluntary, non pre-emptivc
scheduling scheme was utilized
among the user tasks that
enforced the notion that nc
transfer of control or context
switching among tasks coulu
occur unexpectedly. Bearing
in mind that within an Adu
environment the underlyin
operating or runtime syst.r
utilizes another level oy
scheduling for the inte:
leaving of currently acti ..
tasks, a task prioritization
scheme among these tasks .,
then required to enforce the
notion that a particular tauk
is incapable of having itg
scheduled execution inte;-
rupted once it begins,

D.3.5.7

ORIQINAL PACE IS
OF POCR QUALITY

—E—

In short, we have a
scheduling scheme at the user
task level to specify fixed--
rate triggering of a tasks'
processing and the Ada pragma
"PRIORITY" enforced at the
underlying operating or
runtime system level to ensure
uninterrupted completion of
that processing.

The major potential point
of failure with respect to
this type of approach to task
scheduling at the applications
level is at the underlying
runtime system level. The
issue is one of consistency
from implementation to
implementation with respect to
time slicing of concurrently
executing processes of equal
priority. While fixed rate
triggering of task execution
can be gquaranteed via a
combination of algorithmic
control, prioritization, and
interrupt handling through the
"psuedo executive", no such
quarantee can be made with
respect to the method of time
slicing utilized by the
underlying runtime support for
concurrent tasks of equal
ptiority. This will vary from
implementation to implemen-
tation although adhering to
the sn-called "FAIR" require-
ment dictated by the language
1 cvification. Given the
“*ringent nature of typical
ivy performance and reliabil-
ity requirements, this
iotentjial {inconsistent
iehavior across implemen-
.ations could pose a 8signi-
ticaunt risk,

Static prioritization of
Ada tasks may be a problem in
come instances of task
tcheduling or interrupt

handling since external events
often dictate a need to
dynamically change priori-
ties. The Ada rendezvous
occurs in a first in, first
out manner using a queue
structure for multiple entry
calls issued for any given
task entry joint (ACCEPT
stateaent). There is no way
to reorder and influence the
position a calling task may
occupy in such a queue. It is
possible that with dynamic
task prioritization this could
be programmer controlled.

wmm The
FORTRAN/ Assembly language

implementation used as a model
in this case study was coded
in a little over 1 K (bytes)
of memory and accounted for
somewhat less than two percent
of the entire system. While
the entire Ada system consis-
ted of just over 700 lines of
code, the space requirements
varied with respect to the
host machine. The Ada version
required anywhere from 27 K to
38 K bytes of memory for the
applications code alone. The
runtime kernel on one machine
imposed an additional penalty
of 200 K bytes to utilize the
Ada tasking model. It should
be noted, however, that the
executive ways developed fo1
functional realism and was not
optimized for minimal program
size., The runtime kernecls
were large, as much as 200K
bytes, but the runtime kernels
were {ntended for a main-frame
environment, not a typical ECS
apnlication,

The significant lessonu
learned were {n what options
were available to optimize the
size and speed of the execcu-

D.3’5.8

ORIGINAL PAGE Is
OF POOR QUALITY

table image. Significant
savings - approximately 100K -
wvere avajilable via a select-
ively loadable tasking kernel
in at least one implementation
while other options resulting
in savings were no runtime
checking (1-2K savings), and
no debugging instrumentation
{SK savings). 1In one parti-
cular implementation, the
option for space optimization
was offered yet yielded no
appreciable difference in the
size of the executable image.

While there is no strict
linear relationship with
respect to overhead between
host and ECS environments, the
significant savings realized
through configurability within
the host environments has
significant positive impli-
cations for ECS environments
where efficiency constralints
are paramount.

It was found that the
total storage penalty to
include a minimal exception
handling capability within
each Ada program unit was on
the order of 4-5 percent of
the total program storage
while the cpu overhead to
invoke an exception handler
ranged from 30-500 micro-
seconds. This represents an
acceptable cost in either a
hoat mainframe or embedded
enviranment,

The overh-ad in terms of
time to uvtil.ze the rendezvous
mechanism wicthin the host
environwnent was rather high,
being approximately 11-12
milliseconds. Given the
relatively rapid frame times
of many real-time applications
{on the order of 40-100

milliseconds), a feature that
uses approximately one tenth
of the frame time poses
serious risk’. However, based
upon current investigations
with Ada for embedded 16 and
32 bit targets, the case can
be made that this is a problem
somewhat localized to the
mainframe environment.

IX._THE BARE MACHINE APPROACH

The alternate design
approach proposed in this
study for the Ada priority
driven executive (see Figure
5) i8 intended for a bare
machinc environment with no
resident operating system nor
any veador supplied Ada
runtime support. The design
of such an executive raiscs
some important issues with
respect to validation when
considering what must be
provided to support the
execution of an Ada appli-
cation on such a bare target.
The implications of the tradi-
tional model of an executive,
such as the original
FORTRAN/Assembly languaye
implementation used as a basis
for this 8 udy, are consi-
dered.

This approach differs
greatly from that which
utilizes an underlying runtime
system, This approach implicy
that beyond the generation of
native machine instructions
from the HOL by some generic
translator or compiler, it
becomes necessary to provide
programmer supplied support
for any HOL language featurcs
not directly implementable
througl primitives on the baic
hardware. It therefore
becomes the task of the

D.J.S.g

ORIGINAL PAGE 1T
OF POCR QUALITY

runtime supervisor or execu-
tive software to provide this
underlying support for things
such as concurrency or
multi-tasking, 1/0, dynamic
storage and memory management
to name a few, In addition,
this executive must not, in
turn, rely on some underlying
support for its own execution.

Validation i{s certainly
an issue with respect to this
kind of subset Ada approach.
While recognizing the incom-
patibility of this approach
with the notion of validation,
we choose not to address the
topic in any detail other than
to acknowledge the conflict.
Our focus is on technical risk
identification and minimi-
zation,

The design of this bare
machine executive was purely
hypothetical and no specific
embedded target was selec-
ted. For that reason, only a
high-level design was iter-
ated. Currently, typical
vendor supplied Ada runtime
support packages facilitate
things such ag: system
claboration or initialization,
task communication and
tscheduling, exception han-
dling, interrupt, 1/0, and
type support. The amount of
overhead varies with each
vendor's implementation. The
desiqn proposed is for an Ada
wxecutive function that would
minimally support the execu-
tion of other Ada software
constituting 3jobs or
"tasks"., However, the Ada
tasking model is not supported
.7/ the proposed subset Ada
implementation for a bare ECS

. target,

As in the traditional
model, concurrency is achieved
via the executive utilizing a
non pre-emptive, voluntary
context switching mechanism.
Control over scheduling is
therefore explicit and known
to the programmer. In
addition, any dynamic data or
storage management is restric-
ted to that which supports the
execution of the executive
functions only.

It must be noted that the
notion of an "all Ada execu-
tive" at this level 1is
fallacious. A certain amount
of privileged accessing of
register and stack contents by
the executivz functions to
facilitate the basic context
switching and memory manage-
ment would be required. This
is not directly achievable
from within the Ada language.
Therefore, a component of the
executive software (e.g. the
Control_Transfer_Package)
would by necessity be imple-
mented in a lower level
programming language. In
current commercial Ada runtime
systems for embedded targets
such as the 1750A, this
accounts for approximately two
percent of the vendor supplied
runtime support. Ada packag-
ing concepts facilitate the
encapsulation and {solation of
such machine context sensitive
components.

The rationale for the
approach to concurrency
presented is straightforward.
While explicit context
switching can be considered
risky, it has certain poten-
tial benefits. It avoids the
necessity of excessive locking
since the programmer knows

00305010

ORIGINAL PAGE IS
OF POOR QUALITY

@

exactly when context switches
are to be performed. Another
benefit is realized when a
high priority event occurs
that must be handled rapidly
as is the case in many
real-time systems., While
handling such an event, it may
be deleterious to release the
processor. Finally, the
avoidance of unnecessary
context switches and/or
checking gesults in greater
efficiency®.

Admittedly, however, it
is reasonable to question the
feasibility and advantages of
using Ada without its tasking
features and other real-time
components versus using any
other high-level programming
language. It should also be
noted that, with some
re-working of the design,
there is nothing to explicitly
prevent the use of the Ada
tasking mocdel and rendezvous
concept, provided that the
necessary runtime support is
supplied at an acceptable cost
in memory overhead and
execution efficiency. This is
the motivating concept driving
our current and future
investigations with respect to
Ada real-time systems and will
be discussed in the following
section,

Current and Puture Investji-
gations The rationale for an
approach such as the beare
machine option is that given
the present state of tasking
support in an environment that
supports full Ada tasking,
exception handling and other
HOL features, the resultant
program size may be unsuitably
large for an embedded appli-
cation. While the applica-

tions level strategy and the
bare machine approach repre-
sent two available options, an
additional alternative exists
that holds some promise for
the design of compact,
efficient real-time systems
and is the focus of our
current and future investi-
gative work. This consists of
a migration to the RTS layer
in pursuit of optimization and
risk reduction at this level
while maintaining the complete
(or nearly complete) function-
ality of the language. The
focus is on tailorable,
configurable runtime support
for the design of efficient
real-time systems in Ada.

It is highly likely t!
the full functionality of tl..
traditional model of a
priority driven executive cun
be achieved in this manner by
minimizing the role of a
programmer supplied executive
and relying on the efficient
implementation of the Ada
tasking model at the operating
or runtime system level.
While it may still be neces-
sary to provide customizcd
runtime/executive support,
this can be provided primarily
through tailoring of existiny
systems at the RTS level to
meet specific performance
requirements rather than
exerting additional control ut
the applications layer.

Our current efforts arc
focused foremost on proof o
concept =~ that we can design

and implement fast, compact,
efficlent, real-time systems
in Ada - with a secondary
emphasis on the validation
issues. The steps we have
identified as being necessary

D.3.5.11

ORIGINAL PAGE S
OF POOR QUALITY

‘mature and currently available

R Lt R USSR VIR TR SR STV R LNBAT RV £ e S AR

to the success of this effort
include:

e Obtain valided Vendor
Supplied RTS

e Maintain Stable RTS
Interface

e Modify Internals to gain
Required Performance

e Address validation

issues

CONCLUSION

Although several of the
issues that face developers of
real-time ECS applications in
Ada are design issues or
primarily resolved through
education, training and good
programming technique, many
issues remain that pose risk
to the development of
real-time systems in Ada.

(Re)

We have identified a
number of key risk areas and
issues for real-time ECS
applications and have explored
these issues, and solutions,
within the context of a
specific Ada language appli-
cation, With respect to the
issues that were successfully
addressed within the scope of
this case study, the following
conclusions can be made.

Many issues of concern
exist due to the immaturity
and gquality of Ada language
implementations and uncertain-
ties regarding performance,
The performance of the code
generated by early compilers
may be poor and may result in
poor system performance. How-
ever, as Ada language systems

optimizing technology 1s
employed, large runtime
overhead with respect to
memory utilization and
execution speed should
certainly become less of an
issue. This is in fact the
case with some of the Ada
language systems currently
under development.

Current investigations
with a variety of differing
compiler systems and runtime
environments for 16 and 32 bit
embedded targets have revealed
that kernel runtime systems
currently exist that appear to
be providing the minimal,
configurable support necessary
to accommodate Ada language
features in a timely and
efficient manner, Standard-
ized kernel runtime support on
the order of 2K provided by
minimal system service
interfaces is currently
available (e.g. VRTX) and can
be targeted and utilized
efficiently by Ada compiler
systems for a variety of
embedded targets.

Problems remain with the
non-support among many Ada
implementations of certain
real-time features of the Ada
language. A case in point is
the vectoring of interrupts to
task entries via the Ada
representation specification.
This continues to be a concern
to the real-time applications
community although it 1is
somewhat localized to the
mainframe environment.
Additional problems are rooted
in the language specification
itself (MIL STD 1815A) which
fails to provide certain
features desirable in typical
real-time systems.

D.3.5.12

ORIGINAL PAGE IS
OF POOR QUALITY

While alternatives exist,
this lack of certain explicit
language primitives poses
unique problems for many types
of real-time applications.
Specifically, the lack of
explicit language primitives
to allow dynamic "discon-
nection™ and "connection" to
interrupts without the
termination or creation of a
program unit (task) and the
inability to utilize dynamic
task prioritization are of
major concern to ECS devel-
opers. Furthermore, the lack
of precision in the specifi-
cation of exact delays as well
as the lack of alternatives ot
ability to time-out during
initiated rendezvous' may be
an impediment to the develop-
ment of efficient, reliable
real-time systems in Ada.

There is a continuing
need for a clear, concise
design methodoloqy for
real-time embedded Ada
applications that includes a
criteria for the identifi-
cation of concurrency and a
graphic means of depicting
concurrent relationships with
timing and synchronization
information at any given point
in the system. While helpful,
the hybrid method utilized
during this case study falls
short of fulfilling such a
broad requirement.

We are currently contin-
uing our real-time investi-
gations to evaluate the
effectiveness of Ada language
systems for real-time embedded
applications within realistic
host and target environments.
This work is being carried out
with a focus on the 1750A and
68000 compiler and runtime

environments,

The focus of our {nitial
case study was at the appli-
cations level although an
alternative was proposed for a
prohibitively restrictive Ada
executive that fulfilled a
subset of the runtime respon-
sibilities to support the
execution of concurrent Ada
programs. The current approach
calls for migration to the RTS
level to investigate optimi-
zation and tailoring of
existing systems to allow
efficient use of the Ada
tasking model and other
real-time features within
realistic target environ-
ments. It i{s in this manner
that we will attempt to
address and seek additional
information and solutions to
those issues left unanswered
in our preliminary Ada
real-time investiqations.

Options for future
efficiency improvement and
risk-reduction include:

e Highly Configurable
Runtime Support Systems

e Standardized Runtin.
Support Systems

® Support in Silicon

e Custom RTS Component:
Libraries

ACKNOWLEDGMENTS

The authors wish t.
acknowledge the support and
advice of the personnel uat
Intermetrics, Inc., in the
preparation of this manu-
script.

D.3.5.13

ORIGINAL PAGE 1S
OF POCR QUALITY

R R R R I Le L LT S

REFERENCES

Judge, J.F., "Ada
Progress Satisfies DoD",
Defense Electronics, June
1985.

Booch, Grady, Software
ngineerin with da,

Benjamin/Cummings, Menlo
Park, California, 1983,

Davis, R., "FDA Program
Conclusions", Inter-
metrics Inc., Huntington
Beach, California,
August, 1985.

Laird, James D., "Imple-
mentation of an Ada
Real~Time Executive: A
Detailed Analysis",
Intermetrics 1Inc.,
Huntington Beach, Calif-
ornia, March, 1985.

Gomaa, H., "A Software
Design Method for
Real-Time Systems",
Communications of the
ACM, Vol. 27, No. 9,
September 1984,

Temte, Mark, "Object
Oriented Design and
Ballistics Software", ACM
Ada Letters, Vol. IV,
No. 3, November/December,
1984,

United States Department
of Defense, Reference
Manual for the Ada
Programmjng Lanquage MIL
STD 1815A, Ada Joint

Program Office, March,
1983.

Binding, Carl, "Cheap
Concurrency in C", ACM
SIGPLAN NOTICES,

D.3.5.14

ORIGINAL PAGE IS
OF POOR QUALITY

Vol. 20,
ember 1985,

No.

9,

Sept-

